
Developing Parallel GeoFEST(P) using the PYRAMID AMR Library

Charles D. Norton, Greg Lyzenga, Jay Parker, and E. Robert Tisdale
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive, Pasadena, CA 91109-8099

Abstract— The PYRAMID parallel unstructured adaptive
mesh refinement (AMR) library has been coupled with the
GeoFEST geophysical finite element simulation tool to sup-
port parallel active tectonics simulations. Specifically, we have
demonstrated modeling of coseismic and postseismic surface
displacement due to a simulated Earthquake for the Landers
system of interacting faults in Southern California. The new
software demonstrated a 25-times resolution improvement and a
4-times reduction in time to solution over the sequential baseline
milestone case. Simulations on workstations using a few tens
of thousands of stress displacement finite elements can now be
expanded to multiple millions of elements with greater than
98% scaled efficiency on various parallel platforms over many
hundreds of processors. Our most recent work has demonstrated
that we can dynamically adapt the computational grid as stress
grows on a fault. In this paper, we will describe the major issues
and challenges associated with coupling these two programs to
create GeoFEST(P). Performance and visualization results will
also be described.

I. INTRODUCTION

The finite element technique offers nearly the greatest gener-
ality in modeling heterogeneous faulted regions of the Earth’s
crust (e.g., Los Angeles). GeoFEST(P) is an MPI-parallel code
which has demonstrated 500 year simulations of postseismic
Southern California deformation processes including multiple
interacting faults, using 1.4 million finite elements, half-year
time steps, and up to 512 processors of various computing
systems. Wallclock times are typically a few hours.

A. Overview of GeoFEST

GeoFEST simulates stress evolution, fault slip and plas-
tic/elastic processes in realistic materials [1], [2], [3]. The
products of such simulations are synthetic observable time-
dependent surface deformation on scales from days to decades.
Scientific applications of the code include the modeling of
static and transient co– and postseismic Earth deformation,
Earth response to glacial, atmospheric and hydrological load-
ing, and other scenarios involving the bulk deformation of
geologic media.

It has also been integrated into the QuakeSim portal, which
offers users an integrated web services environment. Problems
can be specified and solved by non-experts through the web
portal, and the resulting deformation can be displayed in
combination with Landsat imagery and a digital elevation
model.

This research was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and
Space Administration.

GeoFEST is designed to aid in interpretation of GPS, InSAR
and other geodetic techniques, some of which are undergoing
an exponential increase in volume due to NASA remote
sensing and satellite geodesy programs. For these, and other
reasons, parallelizing GeoFEST represents an important part
of the Quakesim Project. For example, simulations are planned
that will use a 16 million element model of the Los Angeles
basin to find a physical basis for the observed localized com-
pression of the northern portion of the basin. Adaptive mesh
refinement capabilities are also needed allowing elements to
be concentrated in areas where high resolution is required.
To achieve these goals GeoFEST has been coupled with the
PYRAMID library.

B. Overview of PYRAMID

Adaptive Mesh Refinement (AMR) is an advanced com-
putational technology applicable to a wide variety of science
and engineering simulation problems. The PYRAMID library
supports parallel adaptive methods by providing parallel grid-
based remeshing techniques. Our software simplifies how
the user interacts with the grid for problems that exhibit
complex geometry and require the use of parallel computers.
PYRAMID contains many library commands, written in For-
tran 90, generally organized around the concepts of a mesh
data structure and operations that allow manipulation of that
structure. All of the concepts about parallel computation are
hidden behind library interface commands.

In the following sections we describe the development pro-
cess associated with coupling GeoFEST and PYRAMID [4],
[5] to create GeoFEST(P). Our simulation results modeled
the Landers system of faults where the surface nodal mesh
is shown in figure 1.

II. SOFTWARE DEVELOPMENT

Working closely with the Quakesim Team we instrumented
the GeoFEST software with PYRAMID library commands
to support parallelization of the sequential version of the
code. This required building a C-adaptor library that allowed
GeoFEST (written in C) to use the PYRAMID library (written
in Fortran 90). Furthermore, commands from the library for
I/O, parallel mesh partitioning, and support for communica-
tion of boundary data among processors were added and/or
created. During this process optimizations were added to both
codes. This software runs on a variety of platforms including
both Intel Pentium/Itanium-based and Apple PowerPC-based
cluster computers with high efficiency.



Fig. 1. Vertical fault segments (10 km deep) and surface nodes for
LandersGap64 mesh, center region. Node spacing is near 1 km close to the
faults, gradually relaxing to 35 km at the boundaries beyond view.

The team used an approach rarely applied in scientific
software development called “Extreme Programming”. In this
method team members collaborate interactively during the de-
sign and integration process. This software team development
technique consists of one team member editing the software
while all members contribute ideas and approaches by viewing
the software within a group setting. This method was effective
in allowing all team members to bring their specific expertise
to the effort that included geophysics, computational science,
computer science, and visualization. It also helped minimize
errors in the software development as problems were often
detected by a team member immediately. Using this method
was not an a-priori objective—it simply occurred due to the
nature of our collaboration. Four members were involved and
this appeared to be an appropriate number in this case.

Nevertheless, numerous challenges faced our team during
the development process. These challenges, and their solu-
tions, are presented next.

A. C and Fortran 90 Interoperability

GeoFEST is written in the C programming language while
PYRAMID is in Fortran 90 so interoperability was an im-
mediate challenge. The approach we used was not based on
creating C wrapper software around existing Fortran 90 calls.
While this approach is completely portable it would require the
use of numerous copies as pointer data structures are passed
from Fortran 90 to C.

Instead, a C-adapter library was created that represents
an innovation for interlanguage communication between For-
tran 90 and C. This is an interface that provides direct access
to Fortran 90 data structures from C. This is accomplished by
creating an exact replica (in C) of the PYRAMID Fortran 90
mesh data structure and calculating a few compiler specific
entities, such as the size, representation, and layout of For-
tran 90 pointer types. Although arguments are passed from

PYRAMID in Fortran 90 to GeoFEST in C, no copies are
ever made and there is effectively no cost for the interaction.

B. Input Data Configuration

Both GeoFEST and PYRAMID require a description of the
finite element mesh that is a discretization of the continu-
ous domain. Additionally, the decision was made early on
that GeoFEST would use its existing data structures during
simulations. This impacts parallel programming development
since the GeoFEST input file must be parsed to extract
the mesh structure for conversion into PYRAMID format
for subsequent parallel mesh partitioning. Additionally, since
GeoFEST identifies elements based only on the node positions
enrichment of this format is also required as Pyramid requires
the specification of faces and edges to support adaptive mesh
refinement.

An auxiliary program called “GFmeshparse” was created to
translate the GeoFEST input into Pyramid format. (One must
be certain that these files are consistent with the problem to be
solved.) Since PYRAMID provides the input mesh partitioning
this allows GeoFEST to simply store input data associated with
that partitioning on a per processor basis. The data structure for
GeoFEST is now distributed, but additional work is required
to ensure that the finite element solver will perform correctly.

C. Parallel Programming Issues

The parallel version of GeoFEST is designed to be as
functionally similar to the original sequential code as possible.
From the user perspective, the code is essentially identical,
with a few additional steps in order to convert the sequential
input file into one that the parallel code can utilize. The
basis for the parallel computation performed by GeoFEST is
the concept of domain decomposition. The machine model
assumed for this style of parallel computing consists of some
number of independent processors, each with its own address-
able core memory space. The processors are each executing
identical code, but not synchronously, as each processor acts
and branches in distinct ways on its unique data. The proces-
sors interact and exchange data with one another by message
passing, and this communication is mediated in the GeoFEST
code through use of routines from the PYRAMID library as
well as through a small number of direct calls to the MPI
protocol.

At the algorithmic level, domain decomposition requires
each of the processors to work on a given spatially contiguous
piece of the finite element grid. Such communication as is
necessary to update and maintain consistency between the sub-
domains where they join one another is the principal challenge
of the parallel programming problem. While the PYRAMID
library provides data to GeoFEST describing to the current
distribution, routines also provided to handle the inter-partition
data communication issues as well. An example of the domain
partitioning of the Landers mesh is shown in figure 2.

In the GeoFEST parallel decomposition scheme, each pro-
cessor has exclusive ownership of a block of finite elements;
from this it follows that there will exist shared components
such as nodes. These are the nodes that are simultaneously



Fig. 2. Landers mesh where colors indicate partitioning among processors
(limited to 16 processors in this image for clarity, actually 64 processors were
used). Partitions cluster near the domain center due to the high mesh density
that is used near the faults.

members of elements that belong to two or more different
processors. From this scheme it follows that certain tasks
(those which are inherently element-based) can be carried out
completely in parallel, without need for interprocessor com-
munication. On the other hand, tasks that are inherently node-
based will generally require addition of updating steps that
communicate shared nodal information between processors.

The calculation and storage of element stiffness matrix
contributions is a task of the first kind; once GeoFEST has
been given processor assignments for each element, from
PYRAMID’s data partitioning, the formation of each element
contribution can proceed independently in each processor.
However, operations involving the assembled vector of nodal
displacements that comprise the fundamental unknowns of the
problem are of the second kind. This fact leads us to a decision
point in choosing the solver for the global finite element matrix
equation which will be an interactive preconditioned conjugate
gradient (PCG) solver. This approach has benefits given our
domain decomposition strategy and the need to demonstrate
scalability for large three-dimensional problems on parallel
computers.

The PCG algorithm does not require the stiffness matrix
to be assembled in global form; it is sufficient to retain the
individual element contributions (and accompanying indexing
information) in element-specific storage distributed among
processors. As for node-based vectors such as the vectors of
displacements and forces, each processor stores that subset of
the vectors that correspond to the nodes exclusively within its
region, along with redundant storage of all the nodal degrees of
freedom that are shared, that is, that are located on a boundary
between processor regions.

Note that the two important tasks in the algorithm that re-
quire interprocessor communication are the vector dot product
and the stiffness matrix-vector product. In the case of the
former, each processor calculates its contribution to the global

scalar product, using the vector entries in its local storage.
This is immediately followed by MPI communication calls
that combine the pieces into a global result and distribute the
product to all processors. At the conclusion of this operation,
each processor is then free to carry on with its independent
process.

The matrix-vector product is carried out similarly, although
the communication pattern is somewhat more complex. In this
task, each processor carries out the multiplication of locally
stored matrix elements with locally stored vector entries. The
result is usually a vector entry in the local processor, but
some of the results will fall on a boundary node which
is shared with another processor. In this case, rather than
a global (all processors) MPI communication, a pair-wise
communication between the involved processors is used to
update and reconcile the vector results at all shared nodes, so
that at the conclusion of the communication step all processors
will contain vector values that agree with one another, and with
the values that would be obtained in the equivalent single-
processor sequential calculation. The PYRAMID library pro-
vides routines to GeoFEST to accomplish these operations.

III. PERFORMANCE RESULTS AND VISUALIZATION

The parallel version of the software has given excellent
performance results across many different computing systems.
The 1992 Landers fault event is modeled consisting of three
closely arranged faults with 865 square km in a domain 1000
x 1000 x 60 km as illustrated in figure 2. Figure 3 shows
the surface elastic uplift for the Landers fault case for two
meshes of different sampling density, for 4 processors (82,000
elements) and for 64 processors (1.4 million elements). The
visual quality of the solution is dramatically improved, high-
lighting the need for meshes with millions of elements and
parallel computers.

Figure 5 illustrates the efficiency of the implementation
for a scaled problem size on 4, 16, and 64 processors using
the Landers data. The performance of the iterative solve
(representing the most computationally intensive part of the
calculation) across various systems is shown in figure 6. This
is measured as the average time per iteration which is a fairly
constant metric for scaled problem sizes. A visualization of
the coseismic earthquake event followed by the postseismic
surface deformation after 500 simulation years is shown in
figure 4

Figure 7 shows the computation and communication asso-
ciated with the iterative solve inner-loop calculation which
dominates performance. The black region represents compu-
tation of the sparse stiffness matrix/vector product within a
local partition (note that the stiffness matrix is not explic-
itly formed as a single matrix). The red sections represent
communication associated with completing that product while
the violet represents the global vector dot products associated
with data at the shared nodes at inter-partition boundaries.
This operation occurs hundreds of times per time-step over
hundreds of time steps. The data shows that computation
dominates communication and that the calculation is well
balanced.



Fig. 3. Models of Landers earthquake deformation at two resolutions. These images show the accuracy improvement going from 82,000 finite elements on
four processors (left image) to 1.4 million finite elements on 64 processors (right image).

Fig. 4. GeoFEST(P) simulated surface displacement from coseismic Landers model, displayed as InSAR fringes (5.2 cm vertical displacement is one color
cycle) with simulated postseismic surface displacement from Landers model after 500 years of viscoelastic relaxation.

IV. FUTURE DIRECTIONS

The team worked closely to instrument the GeoFEST code
with PYRAMID library commands. To do this they developed
an innovative C-adaptor library to bridge the GeoFEST C
code with the Fortran 90 PYRAMID library. Work to date
has brought into GeoFEST PYRAMID functions for parallel
I/O, parallel mesh partitioning, and support for communication
of boundary data among processors. Optimization of key
communication functions was added after initial assessment
of performance. Porting to a variety of parallel computing
platforms ensures the future utility of this combination of
GeoFEST and PYRAMID in future developments.

The baseline problem was modeled after the Northridge
earthquake (single thrust fault). Analysis of individual earth-
quake events with attention to their geographic settings is a
long-term important area of simulation and research. But with
the ability to solve domains with millions of elements implies
we can simulate regions with multiple faults, such as the Los
Angeles basin. Interactions among slipping faults and possible
emergent structures from these nonlinear interactions appears
to be the next advance in forecasting earthquake risk. This
is a new and promising area for simulation, data comparison

and testing of concepts. Many kinds of simulation codes are
beginning to be employed for this new kind of work across
the earthquake community. But a finite element code has close
to the greatest degree of flexibility in including the effects of
realistic structures in the Earth in a heterogeneous domain.
So we expect this improved GeoFEST will have unique value
in validating these other simulations and determining when
other multiple-fault models are leaving out too many material
effects.

Computationally, we have demonstrated efficient parallel
Conjugate Gradient solutions for 3-D faulted-system finite
elements, and linked our method with the PYRAMID library.
The parallel Conjugate Gradient is no surprise, as it has
been demonstrated in other domains of physics. But a freely-
available source code for faulted domains will be helpful to the
US simulation effort. Linking with PYRAMID is a convenient
way to handle issues of partitioning and communication. More
important, it is a first step to using the PYRAMID functions for
parallel adaptive mesh refinement. Adaptive mesh refinement
is essential to attaining high-quality solutions to problems with
widely varying stress intensities in three dimensions. Parallel
mesh refinement has the additional advantage of solving



Fig. 5. Scaling of work (for Landers case on linear scales) in GeoFEST(P)
time-step function with number of processors on three sizes of problems (on
Thunderhead cluster computer, GSFC). Blue indicates ideal scaling (from 4
processors). Expressing work in operations/wallclock time allows comparison
of sizes in single plot.

Fig. 6. Performance of iterative solve (most time consuming part of
calculation) across various platforms.

problems with size commensurate with the memory space of
massively parallel computers without handling the associated
mesh files with solid meshing programs, which are nearly all
written for sequential machines. A domain can be described
and meshed at a relatively low mesh density, imported to
the parallel system, and then key locations in the mesh can
be refined to the degree needed, expanding the number of
elements by large factors (possibly hundreds or more).

In the coming year, the full AMR capability of PYRAMID
will be used by QuakeSim. Key features that will be added
are implementation and verification of a strain-based indicator
of mesh adequacy and assessment of strategies for cycling
snapshot solutions from GeoFEST with a limited number
of PYRAMID refinements. Using AMR, we expect to use
GeoFEST for long-term simulations, with refined meshes that
make near-optimal use of over 16 million finite elements.

Fig. 7. Fine-detail image of the portion of a GeoFEST run that represents
most of the computer time, indicating good parallel performance. Four
processors are represented along the vertical axis, time (total 50 ms) along
the horizontal axis. Two iterations of the Conjugate Gradient algorithm are
shown, of the thousands of iterations making up this simulation. Three features
indicate this algorithm will scale to very large problems: 1) The computational
load (thin horizontal turquoise line on black background) is about the same for
each processor. 2) The time spent in synchronization and communication (red
and violet) is a small fraction of the total. The white arrows indicate the inter-
processor communication paths among processors where such communication
occurs only as needed. (This explains why some processors spend more time
in synchronization than others even though the fraction of time is small.) 3)
(not visible in this plot) the fraction of time spent in communication does
not grow when problem size grows proportional to the number of processors
used.

In this way users will be able to model exquisite details of
complex regional active tectonics.

ACKNOWLEDGMENTS

We acknowledge the on-going support of the ESTO/CT
Program and numerous others that have contributed their
expertise to the development of this software. This research
was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National
Aeronautics and Space Administration.

REFERENCES

[1] J.W. Parker, A. Donnellan, G. Lyzenga, J.B. Rundle, and T. Tullis,
“Performance Modeling Codes for the QuakeSim Problem Solving Envi-
ronment, Computational Science,” in Proc. International Conference on
Computational Science (Part III), Berlin, 2003, pp. 845–862, Springer–
Verlag.

[2] A. Donnellan, G. Lyzenga, J. Parker, C. Norton, M. Glass-
coe, and T. Baker, GeoFEST User’s Guide, 2003,
http://www.openchannelsoftware.org/.

[3] A. Donnellan et. al., “Numerical Simulations for Active Tectonics
Processes: Increasing Interoperability and Performance,” Tech. Rep., JPL,
http://quakesim.jpl.nasa.gov/, Aug 2003.

[4] C. D. Norton and T. A. Cwik, “Early Experiences with the Myricom 2000
Switch on an SMP Beowulf Class Cluster for Unstructured Adaptive
Meshing,” in 2001 IEEE International Conference Conference on Cluster
Computing, D. Katz and et. al. T. Sterling, Eds., Newport Beach, CA,
October 8-11 2001, IEEE Task Force on Cluster Computing, IEEE
Computer Society.

[5] C. D. Norton and T. A. Cwik, “Parallel Unstructured AMR and Gigabit
Networking for Beowulf-Class Clusters,” Lecture Notes in Computer
Science, vol. 2328, 2002.


